98 research outputs found

    Injection-induced fault slip and associated seismicity in the lab: Insights from source mechanisms, local stress states and fault geometry

    Get PDF
    Probing source mechanisms of natural and induced earthquakes is a powerful tool to unveil associated rupture kinematics. The source processes of failure and slip instability driven by stress loading are affected by fault geometry, but the source ruptures of injection-induced seismicity in relation to fault structures and local stress states remain poorly understood. We have conducted a series of fault reactivation and slip experiments on sandstone samples containing faults with different surface roughness (smooth saw-cut fault and fractured rough fault). We impose progressive fluid injection to induce fault slip, and simultaneously monitor the associated acoustic emission (AE) activity. Using high-resolution AE recordings, we perform full moment tensor inversion of all located AE sources, and investigate the changes of AE source characteristics associated with induced fault slip and their relation to fault roughness. For the complex and rough fault, we observe significant non-double-couple components of AE sources and a high degree of focal mechanism heterogeneity. The temporal changes of AE mechanisms associated with injection-induced fault slip on the smooth fault reveal increasing proportions of double-couple components and decreasing variability of AE focal mechanisms when approaching the onset of slip events. The observed inconsistency between the nodal planes of AE sources and the macroscopic fault plane orientation is attributed to the development of secondary fracture networks surrounding the principal slip surface. We analyze changes in the magnitude-frequency characteristics and source mechanisms of AEs with fault-normal distance, showing that for the smooth (mature) fault, Gutenberg–Richter b-value of on-fault seismicity is lower and focal mechanisms are less heterogeneous, compared to off-fault seismicity. Our results emphasize the important role of roughness-related changes in local fault geometry and associated stress heterogeneity for source mechanisms and rupture kinematics of injection-induced seismicity

    Analysis of microseismicity framing ML > 2.5 earthquakes at The Geysers geothermal field, California

    Get PDF
    Preparatory mechanisms accompanying or leading to nucleation of larger earthquakes have been observed at both laboratory and field scales, but conditions favoring the occurrence of observable preparatory processes are still largely unknown. In particular, it remains a matter of debate why some earthquakes occur spontaneously without noticeable precursors as opposed to events that are preceded by an extended failure process. In this study, we have generated new high‐resolution seismicity catalogs framing the occurrence of 20 ML > 2.5 earthquakes at The Geysers geothermal field in California. To this end, a seismicity catalog of the 11 days framing each large event was created. We selected 20 sequences sampling different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. About 50% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events

    Metre-scale damage zone characterization using S-coda waves from active ultrasonic transmission measurements in the STIMTEC project, URL Reiche Zeche, Germany

    Get PDF
    Studies of controlled hydraulic stimulation experiments with active and passive seismic monitoring conducted in Underground Research Laboratories (URLs) benefit from specific knowledge of hydraulic parameters, close by microseismic monitoring revealing structural details of the rock mass, and detailed evolution of seismicity in response to injection operations. Microseismic monitoring is commonly used to characterize a stimulated reservoir volume, for example, in terms of damage evolution of the rock mass. Since seismic attenuation is affected by damage of the rock volume, active seismic sources covering sizes from the centimetre to decimetre scale may help us to investigate space–time varying attenuation properties in a reservoir. This may allow us to monitor damage evolution of the stimulated rock volume in more detail, also since active seismic sources produce stronger signals leading to a broader frequency range that can be analysed compared to passive seismic signals. Within the STIMTEC project in the URL Reiche Zeche (URL-RZ) in Freiberg (Germany), more than 300 active Ultrasonic Transmission (UT) measurements were performed before and after hydraulic stimulations in two boreholes in the targeted rock volume, an anisotropic metamorphic gneiss. The signal-frequency content ranges between 1 and 60 kHz. Assuming scattering attenuation to dominate over intrinsic attenuation, we here apply the single isotropic scattering model. S-coda waves of 88 spatially representative UT measurements are used to estimate the coda quality factor (QC). We obtain stable QC estimates for centre frequencies of octave-width frequency bands between 3 and 21 kHz. We group neighbouring UT measurements to stabilize the observations and form eight UT groups in total, covering different depth intervals in three boreholes and four different time periods to investigate scattering attenuation changes in a spatiotemporal manner. Our final mean QC (⁠QC¯¯¯¯¯¯¯⁠) estimates show characteristic frequency-dependence as observed at the field scale in geological reservoirs. We find temporal variations of QC are strongly connected to hydraulic stimulation, and these variations are more significant than those resolved from velocity changes. QC¯¯¯¯¯¯¯ estimates at frequencies above 15 kHz indicate healing of injection-induced small-scale fractures during a two-months post-stimulation phase. Larger fractures, mostly sampled by lower frequencies (<15 kHz), seem to be more persistent with time (over 15 months). We observe spatial differences of QC¯¯¯¯¯¯¯ values near the mine galleries (driftway and vein drift) and relate these observations to different extents and characteristics of the galleries’ excavation damage zones. Our results further support previous assumptions based on borehole televiewer logs and mapped structures of an existing fault with larger damage zone that crosses the stimulated rock volume NW-SE between the galleries. We conclude that the coda analysis of active UT measurements complements established imaging methods used during experiments in URLs. In particular, coda analysis is a powerful tool for the detection of damage zones and for monitoring local fracture networks with immediate application for imaging georeservoirs considered for exploitation or underground storage of gases and liquids

    Stress drop-magnitude dependence of acoustic emissions during laboratory stick-slip

    Get PDF
    Earthquake source parameters such as seismic stress drop and corner frequency are observed to vary widely, leading to persistent discussion on potential scaling of stress drop and event size. Physical mechanisms that govern stress drop variations arc difficult to evaluate in nature and are more readily studied in controlled laboratory experiments. We perform two stick-slip experiments on fractured (rough) and cut (smooth) Westerly granite samples to explore fault roughness effects on acoustic emission (AE) source parameters. We separate large stick-slip events that generally saturate the seismic recording system from populations of smaller AE events which are sensitive to fault stresses prior to slip. AE event populations show many similarities to natural seismicity and may be interpreted as laboratory equivalent of natural microseismic events. We then compare the temporal evolution of mechanical data such as measured stress release during slip to temporal changes in stress drops derived from Alis using the spectral ratio technique. We report on two primary observations: (1) In contrast to most case studies for natural earthquakes, we observe a strong increase in seismic stress drop with AE size. (2) The scaling of stress drop with magnitude is governed by fault roughness, whereby the rough fault shows a more rapid increase of the stress drop magnitude relation with progressing large stick-slip events than the smooth fault. The overall range of AE sizes on the rough surface is influenced by both the average grain size and the width of the fault core. The magnitudes of the smallest AE events on smooth faults may also be governed by grain size. However, AEs significantly grow beyond peak roughness and the width of the fault core. Our laboratory tests highlight that source parameters vary substantially in the presence of fault zone heterogeneity (i.e. roughness and narrow grain size distribution), which may affect seismic energy partitioning and static stress drops of small and large AE events

    What controls the presence and characteristics of aftershocks in rock fracture in the lab?

    Full text link
    Aftershock cascades are a characteristic feature of natural seismicity, but underlying mechanisms remain debated. Here, we experimentally explore the presence or absence of aftershocks during failure of intact rock and slip on newly created laboratory faults. We show that the overall activity increase and spatial localization of acoustic emission (AE) events during fracture nucleation occurs without temporal (Omori-type) correlations. Our analysis shows that this absence of aftershock sequences occurs even beyond peak stress and also when a macroscopic fracture has formed post peak-stress and propagates. Instead, aftershock triggering does occur during post-fracture stress relaxation along the newly created lab-fault and in the presence of large-scale stress heterogeneities, for example, imposed by a saw-cut notch. The detected aftershocks in these cases can be described by standard seismological relationships such as a modified Omori-Utsu relation and its associated inter-event time distribution and productivity relation. Moreover, AE within all experiments follow the Gutenberg-Richter relation, with smaller b-values for triggered events compared to non-triggered events. Performing full-moment tensor inversions, we find that seismic events with significant isotropic, compaction components play an important role for aftershock triggering. The resulting triggered events tend to have focal mechanisms similar to their trigger. Seismic events with predominant tensile components, on the other hand, show little evidence for aftershock triggering. This opens up a new perspective on aftershocks, going beyond not only the rate-and-state paradigm limited to purely frictional sliding or shear events but also the mainshock attribute paradigm where mainshock attributes control aftershock patterns

    Strain Partitioning and Frictional Behavior of Opalinus Clay During Fault Reactivation

    Get PDF
    The Opalinus Clay (OPA) formation is considered a suitable host rock candidate for nuclear waste storage. However, the sealing integrity and long-term safety of OPA are potentially compromised by pre-existing natural or artificially induced faults. Therefore, characterizing the mechanical behavior and microscale deformation mechanisms of faults and the surrounding rock is relevant for predicting repository damage evolution. In this study, we performed triaxial tests using saw-cut samples of the shaly and sandy facies of OPA to investigate the influence of pressure and mineral composition on the deformation behavior during fault reactivation. Dried samples were hydrostatically pre-compacted at 50 MPa and then deformed at constant strain rate, drained conditions and confining pressures (pc) of 5–35 MPa. Mechanical data from triaxial tests was complemented by local strain measurements to determine the relative contribution of bulk deformation and fault slip, as well as by acoustic emission (AE) monitoring, and elastic P-wave velocity measurements using ultrasonic transmissions. With increasing pc, we observe a transition from brittle deformation behavior with highly localized fault slip to semi-brittle behavior characterized by non-linear strain hardening with increasing delocalization of deformation. We find that brittle localization behavior is limited by pc at which fault strength exceeds matrix yield strength. AEs were only detected in tests performed on sandy facies samples, and activity decreased with increasing pc. Microstructural analysis of deformed samples revealed a positive correlation between increasing pc and gouge layer thickness. This goes along with a change from brittle fragmentation and frictional sliding to the development of shear zones with a higher contribution of cataclastic and granular flow. Friction coefficient at fault reactivation is only slightly higher for the sandy (µ ~ 0.48) compared to the shaly facies (µ ~ 0.4). Slide-hold-slide tests performed after ~ 6 mm axial shortening suggest stable creeping and long-term weakness of faults at the applied conditions. Our results demonstrate that the mode of fault reactivation highly depends on the present stress field and burial history

    Preparatory Slip in Laboratory Faults: Effects of Roughness and Load Point Velocity

    Get PDF
    Aseismic slip may occur during a long preparatory phase preceding earthquakes, and what controls it remains poorly understood. In this study, we explored the role of load point velocity and surface roughness on slow slip during the preparatory stage prior to stick-slip events. To that end, we conducted displacement-rate controlled friction experiments by imposing varying load point velocities on sawcut granite samples with different surface roughness at a confining pressure of 35 MPa. We measured the average slip along the fault with the recorded far-field displacements and strain changes, while acoustic emission sensors and local strain gages were used to capture local slip variations. We found that the average amount of aseismic slip during the preparatory stage increases with roughness, whereas precursory slip duration decreases with increased load point velocity. These results reveal a complex slip pattern on rough faults which leads to dynamic ruptures at high load point velocities

    Seismicity during and after stimulation of a 6.1 km deep enhanced geothermal system in Helsinki, Finland

    Get PDF
    In this study, we present a high-resolution dataset of seismicity framing the stimulation campaign of a 6.1 km deep Enhanced Geothermal System (EGS) in Helsinki suburban area and discuss the complexity of fracture network development. Within St1 Deep Heat project, 18 160 m3 of water was injected over 49 days in summer 2018. The seismicity was monitored by a seismic network of near-surface borehole sensors framing the EGS site in combination with a multi-level geophone array located at ≥ 2 km depth. We expand the original catalog of Kwiatek et al. (2019) and provide the community with the dataset including detected seismic events and earthquakes that occurred two month after the end of injection, totalling to 61 163 events. We relocated events of the catalog with sufficient number of available phase onsets and moment magnitudes between Mw −0.7 and Mw 1.9 using the double-difference technique and a new velocity model derived from a post-stimulation vertical seismic profiling campaign. The analysis of the fault network development at reservoir depth of 4.5–7 km is one primary focus of this study. To achieve this, we investigate 191 focal mechanisms of the induced seismicity using cross-correlation based technique. Our results indicate that seismicity occurred in three spatially separated clusters centered around the injection well. We observe a spatio-temporal migration of the seismicity during the stimulation starting from the injection well in northwest (NW) – southeast (SE) direction and in northeast (NE) direction towards greater depth. The spatial evolution of the cumulative seismic moment, the distribution of events with Mw ≥ 1 and the fault plane orientations of focal mechanisms indicate an active network of at least three NW–SE to NNW-SSE orientated permeable zones which is interpreted to be responsible for migration of seismic activity away from the injection well. Fault plane solutions of the best-constrained focal mechanisms as well as results for the local stress field orientation indicate a reverse faulting regime and suggest that seismic slip occurred on a sub-parallel network of pre-existing weak fractures favorably oriented with the stress field, striking NNW-SEE with a dip of 45° ENE, parallel to the injection well.Peer reviewe
    corecore